RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

Date Time	:::	FIRST YEAR (BATCH 2018-21) 21/12/2018 PHYSICS (General) 11.00 am – 1.00 pm Paper : I	Full Marks : 50
		<u>Group – A</u>	
Ans	wer	r any seven questions of the following:	[7×5]
1.	a)	Prove that the area of a parallelogram with sides \vec{A} and \vec{B} is $ \vec{A} \times \vec{B} $.	(2)
	b)	Define with examples axial and polar vectors.	(3)
2.	a)	Prove that $\vec{\nabla} \cdot (\vec{\nabla} r^n) = n(n+1)r^{n-2}$ where $r^2 = x^2 + y^2 + z^2$	(4)
	b)	State the Gauss's Divergence Theorem.	(1)
3.	Αŗ	particle of mass m is moving in a conservative force field. Show that at any two points in the	ne
	pat	h of the motion of the particle, the sum of Kinetic and potential energy of the particle is	
	cor	nstant.	(5)
4.	Pro	ove that in polar co-ordinates	
	a)	the velocity of a particle is given by $\vec{v} = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta}$ and	(2)
	b)	acceleration is given by $\vec{a} = (\vec{r} - r\dot{\theta}^2)\hat{r} + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\hat{\theta}$, where the symbols have their usual meanings.	(3)
5.	a)	Established the Newton's equation of motion in an accelerated frame of reference.	(3)
	b)	Explain what coriolis force is?	(2)
6.	a)	Show that a pure shear strain is equivalent to two equal and opposite strains of right angle to each other.	es (3)
	b)	A metal tube, 1 metre long and of internal and external radii 4cm and 4.2 cm respectively clasped at one end. Find the couple which must be applied to the other end to twist it through 30° . The module of rigidity of the material is 2.5×10^{11} dynes / cm ² .	y, is (2)
7.	a)	Define stream line motion and streamline for a fluid flow.	(2)
	b)	What is meant by a Newtonian fluid? Define co-efficient of viscosity of a Newtonian flui	d. (1+2)
8.	a)	What is bending moment?	(1)
	b)	A straight horizontal beam of rectangular cross section is rigidly clamped at one end. The	•
		free end is loaded with a weight W. When the bending is small obtain an expression for the	he
		deflection of the free end.	(4)

9.	a)	Find the expression for excess pressure in a curved liquid film.	(4)			
	b)	A sphere of water of radius 1 mm is sprayed into a million drops all of the same size. Find				
		the energy expended is doing so. Surface tension of water = 72 dyne/ cm .	(1)			
10.	a)	Explain why water rises in a capillary tube dipped partially in water.	(2)			
	b)	The two arms of a U-tube have diameter 10mm and 1mm. The tube is partially filled with				
		water and is held with the arms vertical. Find the difference in the levels of water in the two				
		limbs if the surface tension of water is 0.072 Nm ⁻¹ .	(3)			
11.	De	duce Poisewille's equation for the rate of steady flow of a liquid through a narrow tube. What				
	are	the conditions to be satisfied for the deduction of the equation?	(4+1)			
	<u>Group – B</u>					
Ans	swer	any three questions of the following :	[3×5]			
12.	De	duce the relation $\frac{\mu}{v} - \frac{1}{u} = \frac{\mu - 1}{R}$ for refraction at spherical surface and hence deduce the				
	for	mula $\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$, where symbols have usual meaning.	(5)			
13.	a)	Define optical path.	(1)			
	b)	Using Fermat's principle prove the laws of reflection for a plane surface.	(4)			
14.	Wh	at do you mean by the dispersive power of a lens? Show that an achromatic combination of				
	two	b lenses with dispersive powers ω_1 and ω_2 and focal lengths f_1 and f_2 is possible when				
	$\frac{\omega_1}{f_1}$	$+\frac{\omega_2}{f_2} = 0 \ .$	(5)			
15.	Des	scribe Ramsden's and Haygen's eye-piece with ray diagrams and mention their merits and				
	der	nerits.	(5)			
16.	a)	Show that the angular magnification of astro telescope is equal to the ratio of the focal				
		length of the objective and the eyepiece.	(3)			
	b)	A Ramsden eye-piece is made up of two convex lenses each of focal length 2.5cm and				
		separated by a distance 1.5 cm. Find the equivalent focal length.	(2)			

(2)

X